Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment.
نویسندگان
چکیده
We report on the surface modification of Sylgard-184 poly(dimethyl siloxane) (PDMS) networks by ultraviolet (UV) radiation and ultraviolet/ozone (UVO) treatment. The effects of the UV light wavelength and ambient conditions on the surface properties of Sylgard-184 are probed using a battery of experimental probes, including static contact angle measurements, Fourier transform infrared spectroscopy, near-edge X-ray absorption fine structure, and X-ray reflectivity. Our results reveal that when exposed to UV, the PDMS macromolecules in the surface region of Sylgard-184 undergo chain scission, involving both the main chain backbone and the side groups. The radicals formed during this process recombine and form a network whose wetting properties are similar to those of a UV-modified model PDMS. In contrast to the UV radiation, the UVO treatment causes very significant changes in the surface and near-surface structure of Sylgard-184. Specifically, the molecular oxygen and ozone created during the UVO process interact with the UV-modified specimen. As a result of these interactions, the surface of the sample contains a large number of hydrophilic (mainly -OH) groups. In addition, the material density within the first approximately 5 nm reaches about 50% of that of pure silica. A major conclusion that can be drawn from the results and analysis described in this work is that the presence of the silica fillers in Sylgard-184 does not alter the surface properties of the UVO- and UV-modified Sylgard-184.
منابع مشابه
Effect of ultraviolet/ozone treatment on the surface and bulk properties of poly(dimethyl siloxane) and poly(vinylmethyl siloxane) networks
We present a comparative study aiming at comprehending the effect of ultraviolet/ozone treatment on the modification of poly(dimethyl siloxane) (PDMS) and poly(vinylmethyl siloxane) (PVMS) silicone elastomers networks (SENs). Both PDMS and PVMS SENs undergo dramatic changes in their properties when exposed to UVO. The surface chemical composition of both PDMS and PVMS at long UVO treatment time...
متن کاملManipulating Siloxane Surfaces: Obtaining the Desired Surface Function via Engineering Design
We present a synopsis of recent accomplishment in our group in the area of surface-functionalized silicone elastomer networks. Specifically, we show that by combining mechanical manipulation of poly(dimethylsiloxane) (PDMS) networks with activation via ultraviolet/ozone (UVO) treatment and subsequent chemical modification of the preactivated surfaces, one can generate so-called mechanically ass...
متن کاملPhysicochemical and biological evaluation of poly(ethylene glycol) methacrylate grafted onto poly(dimethyl siloxane) surfaces for prosthetic devices.
Poly(dimethyl siloxane) (PDMS) was surface-polymerized with poly(ethylene glycol)methacrylate (PEGMA) by surface-initiated atom transfer radical polymerization (SI-ATRP) in aqueous media at room temperature. Modification of the PDMS surface followed a three-step procedure: (i) PDMS surface hydroxylation by UV/ozone exposure, immediately followed by (ii) covalent attachment of the initiator, 1-t...
متن کاملKinetics of ultraviolet and plasma surface modification of poly(dimethylsiloxane) probed by sum frequency vibrational spectroscopy.
In numerous applications in microfluidics, cell growth, soft lithography, and molecular imprinting, the surface of poly(dimethylsiloxane) (PDMS) is modified from a hydrophobic methyl-terminated surface to a hydrophilic hydroxyl-terminated surface. In this study, we investigated molecular structural and orientational changes at the PDMS-air interface in response to three commonly used surface mo...
متن کاملIncreased Wettability and Surface Free Energy of Polyurethane by Ultraviolet Ozone Treatment
The wettability of polyurethane (PU) was altered using ultraviolet ozone (UVO) treatment. The effect of UVO treatment on PU surface chemistry was investigated with various experiments. The direct measurement of sessile drops was employed to quantify the static contact angle of different wetting liquids on homogeneous PU films with various UV ozone treatment times. The contact angle of DI water ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of colloid and interface science
دوره 254 2 شماره
صفحات -
تاریخ انتشار 2002